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Abstract

In this report we formulate eigenvalue-based methods for model calibration using a PDE-constrained
optimization framework. We derive the abstract optimization operators from first principles and
implement these methods using Sierra-SD and the Rapid Optimization Library (ROL). To demon-
strate this approach, we use experimental measurements and an inverse solution to compute the
joint and elastic foam properties of a low-fidelity unit (LFU) model.
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Introduction

Predicting material properties from experimental measurements is a pervasive need in engi-
neering systems, and spans multiple physics such as elasticity and viscoelasticity15, 3, 4 as well
as thermal analysis, and electromagnetics.16 Material inversion is a systematic methodology for
reconstructing the missing material parameters from direct experimental measurements. Tradition-
ally, Sandia has relied on modal tests to calibrate finite element models. Thus, in this report we
derive an operator-based optimization approach that is based on an eigenvalue formulation.

The literature contains a wealth of references that deal with the subject of inverse eigenvalue
problems.5, 6 Many of these methods seek to find entries in the stiffness or damping matrix such
that a set of spectral data is matched. As such, there is no direct connection between these methods
and standard parameters in a finite element model. In this work we take an alternative approach
in that the parameters in the optimization process are chosen to correspond directly to physical
material parameters of interest. These parameters then have a direct link to the finite element
model.

Parameter estimation in structural dynamics has a long history at Sandia. The PEGA17 and
PESTDY7 software packages used genetic algorithms and a gradient-based strategy, respectively,
to compute parameters in structural dynamics models. More recently, the ATTUNE9 software has
been used in conjunction with Sierra-SD to calibrate structural dynamics models.

In this report we describe an operator-based PDE-constrained optimization approach to eigenvalue-
based model calibration. One advantage of this approach is that it allows most of the software to
be re-used for other types of inverse problems, such as associated with transient analysis and direct
frequency response. In addition, this approach allows us to leverage Sandia-developed optimiza-
tion software that provides a rich set of algorithms for solving large-scale simulation-constrained
optimization problems. This software also provides capabilities to handle bound constraints on the
parameters, which has been found to be critical for success of the model calibration. Results along
these lines will be demonstrated later in the report.

We also highlight the need for design variable scaling and bound constraints in the optimiza-
tion procedure. The former converts the design variables to dimensionless quantities that have
comparable magnitudes. This mitigates the case where different parameters have vastly different
magnitudes, which can cause numerical difficulties in the optimization algorithms. In addition,
bound constraints prevent unrealistic design variable iterates (e.g. negative moduli) which can
lead to failures either in the optimization or in the linear solver. The benefits of these features are
demonstrated in the numerical examples.

Once the optimization operators are defined, we derive the objective function and gradient
operations that are used to interface with the optimization solver. These methods have been im-
plemented in the Sierra-SD(Structural-Dynamics) framework,1, 18 leveraging much of the same
infrastructure that was recently developed for force identification22 and material identification.21

The objective function, gradient, and Hessian operations directly interface with the Rapid Opti-
mization Library (ROL)13 which is used to solve the optimization problem. ROL is Trilinos10
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package for large-scale optimization. It is used for the solution of optimal design, optimal control
and inverse problems in large-scale engineering applications.

We note that problems with repeated or crossing eigenvalues can present difficulties in the
context of derivative-based optimization, due to non-differentiability of the eigenvalues and eigen-
vectors as functions of material properties.20, 19, 8 We do not address these issues now as they will
be a subject of an additional report.

This report is organized as follows. First, we provide formulations for the forward problems of
interest. Then, we cast the inverse problem as PDE-constrained optimization problem. We derive
the abstract optimization operators for eigenvalue problems and provide details for the efficient
computation of gradients using an adjoint-based approach. We then present numerical results of
material inversion study using both synthetic and experimental data on a low-fidelity unit (LFU)
model.
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Eigenvalue Problem

In the case of a linear structure, the discretized eigenvalue problem is to find the first l eigen-
values, λi, i = 1, . . . , l, and eigenvectors uuui ∈ Rm, i = 1, . . . , l, such that l ≤ m and

KKKuuui = λiMMMuuui (1)

where KKK ∈ Rm×Rm is the stiffness matrix, MMM ∈ Rm×Rm is the mass matrix, uuu = {uuui} ∈ Rk are
the eigenvectors, k = m× l is the product of the dimension of the stiffness matrix and the number
of modes, and λλλ = {λi} ∈ Rl is a vector containing the eigenvalues.

We define a discretized PDE operator ggg(uuu,λλλ , ppp) = ggg({uuui},{λi}, ppp) = {gggi} as

gggi = ggg(uuui,λi, ppp) = KKK(ppp)uuui−λiMMMuuui, i = 1, . . . , l. (2)

Note we are only considering parameters that effect the stiffness matrix, and not the mass matrix.

When solving the forward eigenvalue problem (1), the eigenvectors uuui can be scaled by any
arbitrary factor. We choose to work with mass-normalized eigenvectors, and thus we consider the
additional constraint

bi = b(uuui) = uuuT
i MMMuuui−1 = 0, i = 1, . . . , l, (3)

where uuui is the ith eigenvector.

Inverse Problem Formulation

We consider the general discretized PDE-constrained optimization problem

minimize
{λi},{uuui},ppp

J({λi},{uuui}, ppp)

subject to ggg(λi,uuui, ppp) = 000, i = 1, . . . , l,
b(ui) = 0, i = 1, . . . , l,
ppp≤ ppp≤ ppp,

where ppp ∈ Rn is the parameter vector, ppp ∈ Rn and ppp ∈ Rn, ppp ≤ ppp, are the vectors of elementwise
lower and upper bounds, respectively, J : Rl×Rk×Rn→ R is the cost function and ggg : R×Rm×
Rn→ Rm and b : Rm→ R represent the discretized constraint equations.

The objective function for the eigenvalue problem depends on the eigenvalues, eigenvectors,
and parameters. Given a set of experimentally measured eigenvalues {λmi}, and corresponding
experimentally measured eigenvectors {uuumi}, we have

J({λi},{uuui}, ppp) :=
βi

2
‖{ri}‖2 +

κi

2
G ({uuui},{uuumi})+R(ppp), (4)
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where the ri =
λi−λmi

λmi
represents the relative misfit in the ith eigenvalue, ‖{ri}‖ represents the Eu-

clidean norm in Rl , G : Rk×Rk→R is a functional that measures the misfit in the eigenmodes, βi
and κi are vectors of scaling constants and R : Rn→ R is a regularization operator. Note that βi
and κi can be used to specify the relative importance of the individual modes in the optimization
problem, as well as turn modes on or off, in the event that there are missing modes in the experi-
mental data. An interesting special case is to consider only the first term in the objective function.
In that case, the objective depends only on the eigenvalues, and we have

J({λi}, ppp) :=
1
2
‖{ri}‖2 +R(ppp). (5)

We assume that the system has no zero energy modes, i.e., λmi 6= 0 for i = 1, . . . , l.

To solve this problem numerically, we minimize the reduced objective, see,12

Ĵ(ppp) := J(λλλ (ppp),uuu(ppp), ppp),

where under suitable assumptions (λλλ (ppp),uuu(ppp)) solve the original eigenvalue problem for a fixed
parameter ppp, subject to the bound constraints, i.e.,

minimize
ppp

Ĵ(ppp) subject to ppp≤ ppp≤ ppp. (6)

The first-order necessary optimality conditions for (6) are: if ppp solves (6) then the compoments of
ppp satisfy

ppp j =


ppp j if ∇Ĵ(ppp) j > 0

ppp j if ∇Ĵ(ppp) j = 0
ppp j if ∇Ĵ(ppp) j < 0

or succinctly
ppp = max{ppp,min{ppp, ppp− c∇Ĵ(ppp)}} for fixed c > 0. (7)

To compute the gradient of Ĵ, we define the Lagrangian functional

L (uuu,λλλ , ppp,www,ηηη) := J+
n

∑
i=i

{
wwwT

i gggi +ηibi
}
, (8)

where www = {wwwi} is the Lagrange multiplier corresponding to the PDE operator ggg, and ηi is the
Lagrange multiplier corresponding to the orthonormality constraint bi. The gradient of the La-
grangian is given by 

Lλi

Luuui

Lppp
Lwwwi

Lηi

=


Jλi−uuuT

i MMMwwwi
Juuui +ggguuui

T wwwi +buuuiηi
Jppp +gggT

pppwww
gggi
buuui

 , (9)

where i = 1, . . . , l, Juuui = Guuui is the derivative of the objective function with respect to the state
variables, Jppp is the derivative with respect to the design parameters, etc. We note that the eigenvalue
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solver in Sierra-SD computes mass-normalized modes that satisfy the orthonormality constraint.
Thus, the solution of the forward problem could be thought of as satisfying the conditions on both
gggi and equation (3), i.e. {

gggi
bi

}
=
{

000
}

(10)

for i = 1, . . . , l.

To compute the reduced gradient, we first solve the adjoint equations, i.e., the first and second
equations in (9). Expanding the second equation in (9) yeilds

ggguuui
T wwwi =−Juuui−buuuiηi (11)

or, simplifying,
(KKK−λiMMM)wwwi =−Juuui−MMMuuuiηi. (12)

Since the left hand side of equation (12) is simply the original PDE operator, and λi is a known
eigenvalue, the linear system is singular. In order to ensure that we have a solution, we must make
the right hand side orthogonal to the eigenvector uuui. Premultiplying the right hand side of equation
(12) by uuui

T , and setting to zero, and using the fact that the modes are orthonormal (equation (3)),
we have

ηi =−uuuT
i Juuui =−uuuT

i Guuui. (13)

This gives us an explicit expression for ηi, and by using this ηi we assure that we have a solution
of equation (12). Combining this with equation (12), we have

(KKK−λiMMM)wwwi =−Juuui +MMMuuuiuuuT
i Juuui =

[
MMMuuuiuuuT

i − III
]

Juuui (14)

Now that we have assured that equation (12) will have a solution, we see that due to the singularity
the solution could be offset by any linear combination of the vectors in the null space. Thus, we
consider an orthogonal decomposition of wwwi

wwwi = www0i + γiuuui (15)

where i = 1, . . . , l, and www0i is orthogonal to uuui (that is, uuuT
i MMMwww0i = 000). www0i can be determined by the

singular solve of equation (14). We note that in the special case when the objective function does
not depend on uuui (recall equation (5)), equation (14) implies that www0i = 0. We consider the first
equation in (9) to determine γi

Jλ i−uuuT
i MMMwwwi = Jλ i−uuuT

i MMMγiuuui = 0. (16)

This implies that
γiuuuT

i Muuui = γi = Jλ i. (17)

Thus, we have found the Lagrange multiplier wwwi is simply a scaled version of the eigenvector uuui
plus an offset,

wwwi = www0i + Jλ iuuui. (18)

Using these result, we can compute a reduced gradient as

∇Ĵ(ppp) = Jppp +gggT
pppwww. (19)
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In the simple case where the objective function is given by equation (5), we have Jppp =Rppp and

gggT
pppwww =

l

∑
i=1

gggT
ipppwwwi =

l

∑
i=1

uuuT
i KKK pppwwwi =

l

∑
i=1

{
uuuT

i KKK pppwww0i +uuuT
i KKK pppJλ iuuui

}
=

l

∑
i=1

Jλ iuuu
T
i KKK pppuuui. (20)

Note, the last term in equation (20) is the eigenvalue sensitivity premultiplied by the partial deriva-
tive of the objective function J with respect to the eigenvalue λλλ i. In the case of simple objective
function (5), we have

gggT
pppwww =

l

∑
i=1

λi−λmi

(λmi)2 uuuT
i KKK pppuuui. (21)

Given the reduced gradient (19), a variety of methods from ROL can be used to compute a
parameter, ppp, that satisfies the first-order necessary optimality condition (7).
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LFU model. View of foam and joint blocks.

Figure 1. LFU model with undetermined joint and foam param-
eters.

Numerical Results on a LFU Model.

In this section, we present results applying the formulation described in the previous section
to the calibration of joint and foam stiffness parameters of a LFU model. This model is shown
in Figure 1. The connectors joining the top (yellow) and base (red) are modeled using joint2g
elements with unknown stiffness parameters, and the foam blocks are modeled as elastic with
unknown bulk and shear moduli.

Inversion with Synthetic Data

A modal analysis of this model was performed in Sierra-SD using the parameters for the joint
and foam stiffnesses shown in Tables 1, 2, 3 and 4. The given values of the joint stiffnesses, and
bulk/shear moduli of the foams were used to generate a set of synthetic modes/eigenvalues. Then
the inverse problem was solved using parameters that had those initial guesses for both the joint
and foam parameters. As shown, the initial guesses were chosen to be an order or magnitude
smaller than the exact values. This provided a challenging initial guess for the inversion process.
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We note the importance of using bound constraints in the optimization procedure, as described
in the previous section. Without the bound constraints, the joint stiffness and elastic moduli became
negative in certain iterations of the optimization solution. This caused failures in the linear solver
due to ill-conditioning of the matrices. Table 5 shows the bound constraints used for the parameters
involved in the optimization. Tighter bounds resulted in fewer iterations needed to converge the
optimization problem.

Tables 1, 2, and 3 show the initial guess, exact, and computed joint2g stiffnesses for the three
connecting joints from LFU model, and Table 4 shows the computed bulk and shear moduli of the
foams. The computed parameters from the inverse problem were obtained by running 20 iterations
of the projected line-search limited-memory BFGS algorithm implemented in ROL.13 As can be
seen, 20 iterations is sufficient to achieve convergence to the desired joint and foam stiffnesses.

Figure 2 shows the convergence of the objective function and gradient as a function of the iter-
ation count. Figures 3 and 4 show the convergence of the objective and gradient, respectively, for
cases where bound constraints and design variable scaling were turned on and off. As can be seen,
bound constraints and design variable scaling have a significant impact on the objective function
convergence. In particular, the objective and relative change in gradient are more pronounced when
both bound constraints and design variable scaling are utilized. Without bounds or design variable
scaling, Figure 4 shows that the gradient shows little change in 25 iterations. When adding bound
constraints, the gradient goes down about 5 orders of magnitude in 25 iterations, and when utiliz-
ing both bound constraints and design variable scaling, the gradient drops 7 orders of magnitude.
Similar improvements are seen in the objective function results (Figure 3).

Table 1. Joint2G parameters for joint 1 of LFU model.
kx ky kz krz kry krz

exact 2.46e6 2.0e8 2.0e8 N/A N/A N/A
computed 2.47e6 2.0e8 2.0e8 N/A N/A N/A

initial guess 2.46e5 2.0e8 2.0e8 N/A N/A N/A

Table 2. Joint2G parameters for joint 2 of LFU model.
kx ky kz krz kry krz

exact 2.46e6 2.0e8 2.0e8 N/A N/A N/A
computed 2.47e6 2.0e8 2.0e8 N/A N/A N/A

initial guess 2.46e5 2.0e8 2.0e8 N/A N/A N/A

Inversion with Experimental Data

In this section, we present material inversion results on the LFU model using actual experimen-
tal modal data. Two top and three base units were combined into 6 separate realizations of LFU

16



Figure 2. Convergence of objective function and gradient with
iteration count.

17



Figure 3. Convergence of objective function with and without
bound constraints and design variable scaling.
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Figure 4. Convergence of gradient with and without bound con-
straints and design variable scaling.
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Table 3. Spring parameters for joint 3 of LFU model.
kx ky kz krz kry krz

exact 2.46e6 2.0e8 2.0e8 N/A N/A N/A
computed 2.47e6 2.0e8 2.0e8 N/A N/A N/A

initial guess 2.46e5 2.0e8 2.0e8 N/A N/A N/A

Table 4. Elastic foam parameters for LFU model.
shear modulus (G) bulk modulus (K)

exact 1.585e4 4.134e4
computed 1.585e4 4.134e4

initial guess 1.585e3 4.134e3

models, each of which was disassembled and reassembled 3 times, yielding a total of eighteen re-
alizations of the model. Modal tests were performed on each model, and the first two axial modes
were extracted from each model. The average axial frequencies from all eighteen tests are given in
Table 6.

The modes given in Table 6 were used as input to the material inverse problem, wherein the
unknown parameters were the axial stiffnesses (i.e. in the x direction) of the three joint2g elements,
and the bulk/shear modulus of the foam. The modal frequencies and predicted stiffness parameters
from the inversion are given in Tables 7 and 8, respectively. Similar curves as given in Figures
3 and 4 were observed during the optimization, with relative change in objective and gradient
exceeding 1e−10.

Various initial guesses for the joint2g and foam stiffnesses were assumed, ranging from an
order of magnitude above and below the converged values. It was found that by changing initial
guess, the joint2g stiffnesses and shear modulus of the foam converged to about the same values,
but the bulk modulus of the foam varied with initial guess. Thus, it is likely that additional modes
are needed to accurately characterize the foam bulk modulus.

Finally, we note that 18 sets of modes were measured, but since we are only inverting based on
the average of the 18 sets, we only hope to approximate the average properties of the joint and foam
stiffnesses. A more interesting study would be to invert each measured set of modes independently
to obtain a distribution of material properties. However, given the lack of apparent sensitivity of
the measured modes to the bulk modulus, more measurements would be needed to make such a
study worthwhile.
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Table 5. Bound constraints on parameters for LFU model.
parameter lower bound exact upper bound

G 1.0e3 1.585e4 3.0e5
K 2.0e3 4.134e4 6.0e5
kx 2.0e5 2.46e6 1.0e9
ky 2.0e5 2.46e6 1.0e9
kz 2.0e5 2.46e6 1.0e9

Table 6. Average measured axial modes for the LFU model.
axial mode number frequency (Hz)

1 1195.0
2 2085.0

Table 7. Comparison of average measured and predicted axial
modes for the LFU model.

axial mode number measured frequency (Hz) predicted frequency (Hz)
1 1195.0 1195.0
2 2085.0 2085.0

Table 8. Predicted stiffness parameters for the LFU model.
kx 2.72e6

foam shear modulus 1.4e4
foam bulk modulus 1.1e4
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Conclusions

In this report, we presented an eigenvalue-based material inversion formulation, which we then
implemented using Sierra-SD and ROL. For this problem, bound constraints and design variable
scaling on the parameters were found to be essential for the solution of the presented numerical
examples. We demonstrated a successful calibration of joint and foam stiffness parameters in an
LFU model using the projected line-search limited-memory BFGS algorithm in ROL, with both
synthetic and actual experimental modal data.

Future work will involve enabling second-order (i.e. Newton-based) methods for eigenvalue
optimization, in both reduced and full-space formuations.
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